Angioblast-mesenchyme induction of early kidney development is mediated by Wt1 and Vegfa.

نویسندگان

  • Xiaobo Gao
  • Xing Chen
  • Mary Taglienti
  • Bree Rumballe
  • Melissa H Little
  • Jordan A Kreidberg
چکیده

Most studies on kidney development have considered the interaction of the metanephric mesenchyme and the ureteric bud to be the major inductive event that maintains tubular differentiation and branching morphogenesis. The mesenchyme produces Gdnf, which stimulates branching, and the ureteric bud stimulates continued growth of the mesenchyme and differentiation of nephrons from the induced mesenchyme. Null mutation of the Wt1 gene eliminates outgrowth of the ureteric bud, but Gdnf has been identified as a target of Pax2, but not of Wt1. Using a novel system for microinjecting and electroporating plasmid expression constructs into murine organ cultures, it has been demonstrated that Vegfa expression in the mesenchyme is regulated by Wt1. Previous studies had identified a population of Flk1-expressing cells in the periphery of the induced mesenchyme, and adjacent to the stalk of the ureteric bud, and that Vegfa was able to stimulate growth of kidneys in organ culture. Here it is demonstrated that signaling through Flk1 is required to maintain expression of Pax2 in the mesenchyme of the early kidney, and for Pax2 to stimulate expression of Gdnf. However, once Gdnf stimulates branching of the ureteric bud, the Flk1-dependent angioblast signal is no longer required to maintain branching morphogenesis and induction of nephrons. Thus, this work demonstrates the presence of a second set of inductive events, involving the mesenchymal and angioblast populations, whereby Wt1-stimulated expression of Vegfa elicits an as-yet-unidentified signal from the angioblasts, which is required to stimulate the expression of Pax2 and Gdnf, which in turn elicits an inductive signal from the ureteric bud.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Osr1 Interacts Synergistically with Wt1 to Regulate Kidney Organogenesis

Renal hypoplasia is a common cause of pediatric renal failure and several adult-onset diseases. Recent studies have associated a variant of the OSR1 gene with reduction of newborn kidney size and function in heterozygotes and neonatal lethality with kidney defects in homozygotes. How OSR1 regulates kidney development and nephron endowment is not well understood, however. In this study, by using...

متن کامل

The receptor tyrosine kinase regulator Sprouty1 is a target of the tumor suppressor WT1 and important for kidney development.

WT1 encodes a transcription factor involved in kidney development and tumorigenesis. Using representational difference analysis, we identified a new set of WT1 targets, including a homologue of the Drosophila receptor tyrosine kinase regulator, sprouty. Sprouty1 was up-regulated in cell lines expressing wild-type but not mutant WT1. WT1 bound to the endogenous sprouty1 promoter in vivo and dire...

متن کامل

Targeted mutation of Wt1 in mice results in bilateral renal agenesis, characterized by apoptosis of the metanephric mesenchyme and failure of ureteric bud invasion into the metanephric mesenchyme

INTRODUCTION The pediatric kidney malignancy Wilms’ tumor has an incidence of 1 in 10 000 in North America (Matsunaga, 1981), making it the most common solid tumor in childhood (Bennington and Beckwith, 1975). Wilms’ tumor is thought to arise from a single transformed pluripotent nephron progenitor cell whose progeny fail to undergo normal differentiation. WT1 was the first gene identified as m...

متن کامل

S08-04 Multiple functions for the zinc finger transcription factor odd skipped related1 in kidney and angioblast development

The kidney and vasculature are intimately linked functionally and during development, where nephric and blood/vascular progenitor cells occupy adjacent bands of mesoderm in zebrafish and frog embryos. Developmental mechanisms underlying the differentiation of kidney vs. blood/vascular lineages are unknown. The odd skipped related1 (osr1) gene encodes a zinc finger transcription factor that is e...

متن کامل

S08-07 In vitro organogenesis in vertebrate development

The kidney and vasculature are intimately linked functionally and during development, where nephric and blood/vascular progenitor cells occupy adjacent bands of mesoderm in zebrafish and frog embryos. Developmental mechanisms underlying the differentiation of kidney vs. blood/vascular lineages are unknown. The odd skipped related1 (osr1) gene encodes a zinc finger transcription factor that is e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Development

دوره 132 24  شماره 

صفحات  -

تاریخ انتشار 2005